PEMODELAN DATA CURAH HUJAN DI KOTA LANGSA DENGAN MODEL ARIMA

Authors

  • Wiwin Apriani Universitas Sains Cut Nyak Dhien
  • Nurhayati Universitas Almuslim

DOI:

https://doi.org/10.55098/amalgamasi.v1.i2.pp64-70

Keywords:

Rainfall, ARIMA , Modelling

Abstract

The aim of this research is to provide the results of ARIMA modeling on rainfall data in Langsa City in 2017-2021. The initial stage of ARIMA modeling is the identification of data stationarity. Meanwhile, stationarity in the mean can be done with data plots and ACF forms. Identification of ACF and PACF forms from data that is already stationary is used to determine the order of the alleged ARIMA model. The next stage is parameter estimation to see the suitability of the model. The diagnostic check process is carried out to evaluate whether the residual model meets the white noise requirements and is normally distributed. The Ljung-Box test is a test that can be used to validate white noise requirements. Rainfall data forms a stationary time series. Furthermore, from the model fit test it was found that the MA(1) model was suitable for predicting the model. Meanwhile, AR(1) and ARMA(1,1) are not used to predict because they do not meet the model fit test. The model obtained with the MA(1) model is as follows, namely .

References

Apriani, W. (2020). Perbandingan Metode MA dan LS pada Transaksi Harian Penyetoran Tunai Bank BRI Sungai Liput. Asimetris: Jurnal Pendidikan Matematika dan Sains, 1(1), 37-42.

Apriani, W. (2020). Efektivitas Blended Learning Berbantuan SPSS terhadap Tingkat Pemahaman Mahasiswa pada Mata Kuliah Statistik. Asimetris: Jurnal Pendidikan Matematika dan Sains, 1(1), 12-16.

Apriani, W., Hayati, R. (2021). Metode ARIMA untuk Memodelkan Volume Produksi Kelapa Sawit pada PT. Socfindo di Kabupaten Aceh Tamiang. Jurnal Absis: Jurnal pendidikan Matematika dan Matematika 3(2), 309 – 319.

Fithriasari, K., Iriawan, N., Ulama, B.S.S., Sutikno. (2013). On The Multivariate Time Series Rainfall Modeling Using Time Series Delay Neural Network. International Journal of Applied Mathematics and StatisticsTM, 44 (14), 193-201.

Huda, A. M., Choiruddin, A., Budianto, O., Sutikno. (2010). Peramalan Data Curah Hujan dengan Seasonal Autoregressive Integrated Moving Average (SARIMA) dengan Deteksi Outlier sebagai Upaya Optimalisasi Produksi Pertanian di Kabupaten Mojokerto. Surabaya: ITS.

Purwaputra, I. M. (2015). Peramalan Curah Hujan untuk Evaluasi Pola Tanam Berdasarkan Penanggalan Sasih di Bali. Surabaya: ITS.

Wahyuni, R. (2020). Penerapan Model Time Series Untuk Meramalkan Nilai Un Matematika Di Man 4 Bireuen Tahun 2019. Asimetris: Jurnal Pendidikan Matematika dan Sains, 1(2), 70-76

Downloads

Published

2022-11-17

How to Cite

Apriani, W., & Nurhayati. (2022). PEMODELAN DATA CURAH HUJAN DI KOTA LANGSA DENGAN MODEL ARIMA. Amalgamasi: Journal of Mathematics and Applications, 1(2), 64–70. https://doi.org/10.55098/amalgamasi.v1.i2.pp64-70